Our research

How bacteria defend themselves against their viruses ?

Facing the abundance and diversity of their viruses, bacteria and archaea have developed multiple lines of defense that can be referred to as “prokaryotic anti-viral systems“. Our research focuses on these anti-phage systems.

We are trying to understand evolutionary patterns and molecular mechanisms of these systems but also how to use them for medical applications. We work at several scales: from computational genomic analysis on thousands of prokaryotic genomes to experimental molecular genetics and diverse microbiology tools. We are currently working on the ecology and evolution of anti-phage systems, their conservation with eukaryotic immune systems and how we can harness them for the fight against pathogens.

You can learn more about our field of research through the podcast Micrboes and Us by FEMS where we discussed anti viral defense in bacteria (Episode 12) and through our YoutubeChannel.


Conservation of immune mechanisms across domains of life

Bacteria Reveal Hidden Human Immune Genes!

The Evolutionary Journey of Viperins: Immune Proteins Conserved Across All Life Domains

We are exploring the conservation of immune systems across the domains of life. The hypothesis at the core of this theme is that the conservation between bacterial and eukaryotic immune systems is much more extensive than currently described. We have named the immune and conserved proteins and protein domains ‘ancestral immunity modules’ (Bernheim et al., PLoS Biol, 2024). We are searching eukaryotic genomes (plants, animals, fungi…) for homologs of bacterial antiviral systems. This allows us to trace the evolutionary history of the eukaryotic immune system (Shomar et al., Nat Eco Evo 2024) and also to predict new immune systems in a large number of organisms. We are using this approach to discover new immune systems in humans in close collaboration with Enzo Poirier’s group at the Institut Curie. An initial study enabled us to reveal two new systems involved in human immunity (Cury et al., Cell Host and Microbes 2024), and we are currently studying many other examples! We anticipate that these discoveries could open new therapeutic avenues, for example, in immunotherapies.

Publications:
The immune modules conserved across the tree of life: Towards a definition of ancestral immunity Plos Biology
Conservation of antiviral systems across domains of life reveals immune genes in humans Cell Host and Microbes
Scientific Commentary: Cell Host and Microbes
Viperin immunity evolved across the tree of life through serial innovations on a conserved scaffold, Nature Ecology and Evolution 2024
Scientific Commentary: Nature Research Briefing


Diversity and ecology of defense systems

This review provides a conceptual framework for the diversity of antiphage defense, the evolutionary forces that lead to this diversity and how this impacts bacterial ecology and evolution.

Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.


Publication: The highly diverse antiphage defence systems of bacteria
Georjon H, Bernheim A,
Nature Reviews Microbiology 21 (10), 686-700
(2023)
Chosen for Nature Reviews Microbiology 20th Anniversary collection.


Systematically detecting anti-phage systems and counter defense in genomes

A short video to explain this publication

In the past few years, the world of anti-viral mechanisms in bacteria got crazy with the discovery of many novel systems with crazy cool mechanisms. Their numbers exploded, and so we ended up a bit lost. How many of these bacteria have? Which one is encoded by my favorite bug ?
In 2022, we introduced DefenseFinder, a tool that automatically detects known antiviral systems in prokaryotic genomes. We used DefenseFinder to analyse 21000 fully sequenced prokaryotic genomes, and find that antiviral strategies vary drastically between phyla, species and strains. Variations in composition of antiviral systems correlate with genome size, viral threat, and lifestyle traits. DefenseFinder will facilitate large-scale genomic analysis of antiviral defense systems and the study of host-virus interactions in prokaryotes.
Witnessing the use of this tool by the community, more than 30k downloads (!), we further developped additional tools including a wiki to contextualize the outcomes of DefenseFinder, a database etc. More recently, we also developped antiDefenseFinder to evaluate how mobile elements counter antiphage defense.

Publications:
Systematic and quantitative view of the anti-viral arsenal of prokaryotes Nature Communications, 13:256 (2022)
Twitter thread explaining the discovery
Scientific Commentary: Nature Reviews Microbiology

A Comprehensive Resource for Exploring Antiphage Defense: DefenseFinder Webservice, Wiki and Databases.
bioRxiv, 10.1101/2024.01.25.577194 (2024)
Exploring the diversity of anti-defense systems across prokaryotes, phages, and mobile genetic elements bioRxiv, 10.1101/2024.08.21.608784 (2024)

DefenseFinder and wiki availability
Web service: https://defensefinder.mdmlab.fr
Github: https://github.com/mdmparis/defense-finder


Previous relevant research

Prokaryotic viperins, a novel family of defense systems that produce antiviral molecules

Viperin is an important anti-viral protein of humans that is conserved in animals. It has been shown to inhibit the replication of multiple human viruses by producing a molecule called ddhCTP, which acts as a chain terminator for viral RNA polymerase (Gizzi et al. 2018).

We showed that eukaryotic viperin originated from a clade of bacterial and archaeal proteins that protect against phage infection. Prokaryotic viperins produce a set of modified ribonucleotides that include ddhCTP, ddhGTP and ddhUTP. We further showed that prokaryotic viperins protect against T7 phage infection by inhibiting viral polymerase-dependent transcription, suggesting that it has an antiviral mechanism of action similar to that of animal viperin.

This study showed for the first time that natural antiviral compounds are produced by bacterial immune systems, opening avenues to look for more anti-viral molecules generated by bacteria. It’s also the first time such a strong conservation between a eukaryotic and prokaryotic immune system was demonstrated.

Publication: Prokaryotic viperins produce diverse antiviral molecules.
Bernheim A. Millman A., Ofir G., Meitav G., Abraham C., Shomar H., Rosenberg M., Tal N., Melamed S., Amitai G., Sorek R. Nature, (2021)
Twitter thread explaining the discovery
Scientific Commentary: Cell Host and Microbes
General public summary: English or French:
Press: Times of Israel, Jerusalem Post, News1, israel21, Sciences et avenir

Retrons, mysterious bacterial elements function in anti-phage defense

With two collaborators (Adi Millman and Avigail Stokar-Avihail), in the Sorek lab, we elucidated the physiological functions of genetic elements that had been a mystery for 30 years: retrons. Retrons are bacterial genetic elements comprised of a reverse transcriptase (RT) and a non-coding RNA (ncRNA). We stumbled upon a defense system that encodes a retron. This led us to hypothesize that all retrons function as defense systems. We found out that the defensive unit is composed of three components: the RT, the ncRNA, and an effector protein. We examined multiple retron systems and show that they confer defense against a broad range of phages via abortive infection. Focusing on retron Ec48, we showed evidence that it ‘‘guards’’ RecBCD, a complex with central anti-phage functions in bacteria. Inhibition of RecBCD by phage proteins activates the retron, leading to abortive infection and cell death. Thus, the Ec48 retron forms a second line of defense that is triggered if the first lines of defense have collapsed.
This study solved a three-decades old question, and demonstrated a novel concept in bacterial immunology (the guard hypothesis) inspired by the plant immunology field and conserved in prokaryotes.

Publication: Bacterial retrons function in anti- phage defense
Millman A*, Bernheim A*, Stokar-Avihail A.*, Fedorenko T., Voichek M., Leavitt A., SorekR.
Cell (2020)

Our Twitter thread explaining the discovery
Scientific Commentaries: Science, The CRISPR journal, Nature Reviews Microbiology
General public summary:English
Press: Jerusalem Post, Phys.org, Drug and Target Review, Science Daily